If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+43t+250=0
a = -16; b = 43; c = +250;
Δ = b2-4ac
Δ = 432-4·(-16)·250
Δ = 17849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-\sqrt{17849}}{2*-16}=\frac{-43-\sqrt{17849}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+\sqrt{17849}}{2*-16}=\frac{-43+\sqrt{17849}}{-32} $
| 6y-y-3y=4 | | 16.08+0.05(x+3)=16.83-0.16x | | 15-3x=13-2x | | 5j+13j-12j-4j+15j=11 | | 8w-6w+2w=16 | | n-3/4=123/4 | | -5t-2t+7t=0 | | 8v+v-6v+v-2=12 | | 3q+2q+5q+2q=16 | | 7+5g=52 | | 5x-5x+4x-3x=1 | | 166.50/18=x/24 | | 15n-6n-8n=12 | | 2x-3(x+2)=22 | | (X-6)(x^2-5x+4)=0 | | 3g-7=20+g | | c-c+c=16 | | 12x+24=24 | | 13j-j-6j-3j-j=14 | | 16j+j-5j-6j-2j=12 | | 6^2x=21 | | 17-5t-7-2t+7t=0 | | 7+.40x=1 | | 13j-12j=9 | | 4p=8(4p+5) | | 15r-11r=20 | | 0.07x+0.09(10000-x)=140 | | 4(x-4)+3(x-9)=3(x+10) | | x*4-3=13 | | 14b+13b=13 | | 393+x=724 | | 5-1/9x=13/3 |